If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-252x+902=0
a = 12; b = -252; c = +902;
Δ = b2-4ac
Δ = -2522-4·12·902
Δ = 20208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20208}=\sqrt{16*1263}=\sqrt{16}*\sqrt{1263}=4\sqrt{1263}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-252)-4\sqrt{1263}}{2*12}=\frac{252-4\sqrt{1263}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-252)+4\sqrt{1263}}{2*12}=\frac{252+4\sqrt{1263}}{24} $
| 3x+111+11x+7=180 | | 23=3x+4(x-5) | | 24+8x=8x=8(5x+8)+8x | | 64=16b | | -2/5x+10=15 | | -8n+3=-53 | | 6x+66+14x-6=18 | | 8x5=4 | | x+17=3x-21 | | -3x-9=-2x+3 | | √x+15-√x-3=2 | | .72÷x=3.68 | | 6g-5=2g+3g= | | 4z+1=150 | | -|x-2|=0 | | 16q^2+16q+4=0 | | B+1=b+1 | | 6x-49=59-3x | | 6x+66+14x-66=180 | | 6+n/1=6 | | y+8.9=2.4 | | 6(y-8)=-30 | | -30+2x=-3x+10 | | x(-2x+22)(-2x+41)=0 | | -54-5x=23+2x | | b+15.4=9.7 | | -4x-16=-16 | | F(n)=5-10 | | -58+6x=-2x+38 | | x+4.62=5.48 | | 3(x-6)(x+5)=0 | | 2/3X-21=2x+5 |